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A criterion which enables one to determine in what cases breakdown of the local stability conditions leads to instability of  weakly 
non-uniform flow without dissipation is obtained. Copyright © 1996 Elsevier Science Ltd. 

We will consider the stability of flows which depend slowly on one spatial variablex, i.e. flows in which 
all the quantities depend on X = x/L, where the characteristic scale of length L is fairly large (this is 
in fact necessary in order that the scale L should be much greater than the characteristic lengths of the 
perturbations, which will be considered below). If we "freeze" the flow parameters, making them constant 
and equal to the parameters of the flow for a certain value X, we can consider perturbations of the 
form exp(i~ - i ~ )  and obtain a dispersion relation in which X will occur as a parameter 

~(co, k, X) = 0 (1) 

From (1) we can obtain the frequency co, which is a multivalued analytic function o fk  andX. We will 
consider the case when, for real X and k, real or complex conjugate values of co satisfy (1). If Eq. (1) 
is a polynomial in k and co, the case considered corresponds to coefficients of this polynomial that are 
real. This is a typical situation for flows without dissipation (see, for example, [1]). In the case considered, 
the frozen flow will be locally stable if all the co are real for an arbitrarily chosen X. 

Suppose the flow depends on a certain parameter R, such that a transition to instability occurs when 
R becomes R.. We will assume that a transition to local instability occurs as follows. When R increases, 
a small interval (X1, X2) appears on the X axis, for points of which there is a small range of real values 
of k with complex values of co. When X C (X1,)(2) reclosure of the branches of the multivalued function 
co(k) occurs on the graph of the real values of co as a function of real values of k (henceforth we will 
assume that reclosure of two branches occurs) and a section is formed on the k axis, where the number 
of real values of the; function co(k) is less than previously (Figs 1 and 2). Below we will consider this trans- 
ition and investigate in what cases it leads to instability of the whole flow, and in what cases it does not. 

When the local instability described above occurs two versions are possible: the local instability is 
absolute or convective [2, 3]. The criterion which distinguish absolute instability and convective instability 
in a non-dissipative medium can be formulated as follows. If simultaneously with the occurrence of a 
range on the k axis with complex values of co there is no interval on the co axis with complex k (Fig. 1), 
the instability is absolute. If the occurrence of a range on the k axis with complex values of co is 
accompanied by the occurrence of a range on the co axis with complex values of k (the interval (col, o)2) 
in Fig. 2), the instability is convective [3]. We emphasize that the ideas of absolute and convective 
instability relate to flow with frozen parameters. 

For the local transition to instability considered when R = R.  and the unique value X = X., there is 
a point co = co., k = k. in the k, co plane at which the branches of the co(k) graph intersect. For a slight 
supercriticality, i.e. for small R - R. > 0, the dispersion relation (1) can be expanded in series in the 
neighbourhood of this point and can be written in the following form, for the principal terms 

(co'  - U k ' )  2 = A k  '2 - o~ + ~ X  '2 

co'=co-co,, k ' =k -k , ,  X'=X-X,  (2) 

Here U, A > 0, [3 > 0 are constants, the value of ¢x depends on R, and ~(R.) = 0, ¢x(R) > 0 when R 
> R.. Obviously when ¢x - I~t "2 > 0 local instability occurs. 
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Fig. 1. Fig. 2. 

~2 

We will first consider the case when the local instability that occurs when R reaches the value of R.  
is absolute. Then, for values of R close to R., there is a point X at which the following relations are 
simultaneously satisfied 

ato'/ak'= 0, ato'/ax'= 0 (3) 

As will be shown below, in this case instability occurs due to the fact that Eqs (3) are satisfied and 
due to the formation of an eigenfunction at two close turning points. Such instability was considered 
previously in [4--6]. 

In the case of absolute instability, the coefficients of (2) satisfY the condition U 2 < A. When the latter 
inequality is satisfied, and also when a - I ~  "2 > 0, we obtain from the first equation of (3) and Eq. (2) 

iU Vot - ~X '2 I ((x - ~X '2 )( A - U 2 ) 
, to'=to,~(X')-- i~/ (4) 

k ' = k ~ ( X ' ) = -  ~/A(A_U 2) A 

In (4) we have chosen the branch of to' for which Im to' > 0 at the saddle point ~(X'). 
The value ofX'  = 0 satisfies the second equation of (3). Hence, valuesX" = 0, to' = to~(0), k' = ~(0)  

satisfY both equations of (3). At the point X'  = 0 the analytic function to~(X') has a derivative equal to 
zero, while the harmonic function Im to~(X') has a saddle point. As follows from (4), Im to;(X') < Im 
to;(0) for points on the realX'  axis and Im to'~(X') > Im to;(0) for points on the imaginaryX' axis. Under  
these conditions for perturbations of the non-uniform flow considered (which depend on x/L) there 
are natural frequencies to" close to to; (0) (so that to' - to;(0) = O(1/L)). The eigenfunction is related 
only to the two branches of k(to, X)  and the two turning points in the X plane, which lie on the real X 

1 1 axis close to the point X = X.. These branches of kl(to, X) and k2(to, X) correspond to waves propagating 
in different directions and are described by Eq. (2). At the turning points these values of k* are identical, 
while the turning points themselves when R = R. merge into the saddle po in tX = X.. The construction 
of the eigenfunction is described in [6] for a somewhat different dispersion relation, but it can easily 
be adapted to the case considered here. 

It can be shown that for pure imaginary to', somewhat less in' modulus than I to;(0) I, there are two 
turning points +_.X~, which lie on the real X' axis. This can be seen from the second equation of (4), if 
we regard it as an equation inX'. It follows from (2) that the difference in values/(2 -/gl between turning 
points is real, and it becomes complex outside the section [-X~, X;]. For large values of L this enables 
the eigenfunction to be constructed using the standard WKB method [7] which, in the section [-X~, X~] 
is the sum of two terms proportional to exp(ifkl(to, x)dx) and exp(ifk2(to, x)dx), respectively. This eigen- 
function decays outside the section [-X;,X~t]. The natural frequencies to' must satisfY the equation [8] 

Xf [kl(to',x)-k2(to',x)]dx=rt(n+l ) 

where n is an integer and x t = LX t. The value of to" which satisfies this equation can be chosen to be 
closer to tos(0) the larger the value of L. 
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We will now consider the case when, for R > R. a local instability occurs which is convective (Fig. 
2). Here, in relation (2) U 2 > A and, which is most important, branching of  the function k(to, X) occurs 
for waves travelling in the same direction. We will assume, as in Fig. 2, that they propagate to the right. 
In this case, for real ~ such that tth < to < to2 (where (to1, to2) is the range of values to which complex 
k corresponds when X' = 0), there are two turning points corresponding to real values o f X '  = +-X~t, 
for which in Fig. 2 the straight line to = const touches the dispersion curve to(k). For real to and X the 
values of kl and k2 take complex conjugate values between these turning points. Then, one of the WKB 
waves exp(ifkdx -i tot) is amplified (Ira/(1 < 0) during its motion (as x increases), while the other is 
attenuated (Ira/(2 > 0) due to the factor exp(ifkdx). 

At turning points the usual conversion of the waves with real k into waves with complex k (the Stokes 
phenomenon) occurs, as for second-order equations. If waves corresponding to real k'l(to, X) and ~(to,  
X) arrive at the point X'  = -X~ from the left, then, in general, there will also be both waves corresponding 
to complex k~(to, A~ and/6(to, J 0  from the right of this point. In order that there should be no amplified 
wave corresponding to ~(to, X) more to the right of the turning point, there has to be a strict relationship 
between the amplitudes and phases of the waves arriving at this point. This case will be regarded as 
exceptional and will not be considered. Then, of the pair of waves arising at the point X" = -Xt, one 
arrives at the pointsXt amplified and the second one arrives attenuated. If the length of the section of 
the x axis between turning points is sufficiently long, so that Im(fkdx) >> 1, where the integration is 
carried out betwee, n turning points, the attenuated wave at the point Xt can be neglected. The amplified 
wave is converted at the point Xt into two waves with the same amplitudes, which correspond to real 
k~(to, X) and k~(to, X), and both these waves propagate to the right. Hence, the section [-X;,Xt'] between 
turning points act as a wave amplifier. This corresponds to the representation of the mechanism of 
convective instability as an amplifier [3]. This same amplification mechanism will obviously act not only 
for real to but also for co with values of Im co > 0 that are not too large. 

However, the presence of an amplifier is insufficient for instability to occur. Feedback is also necessary. 
It is necessary for the amplified wave to return once more to the input of  the amplifier. Since the local 
instability can only occur on one section of the X axis, according to the above proposition, the signal 
can only return to the amplified input due to reflections of the waves corresponding to k(to) branches 
that are real for real to. If we draw the graph of real k(to, X) for specified real to, then in order to form 
a perturbation that increases with time it is necessary that at least one of the branches kl(J 0 or k2(g ) 
should represent part of the closed curve for R < R. (the dashed curve in Fig. 3). In this case when R 
< R. there are eigenfunctions corresponding to real values of to [9]. This eigenfunction, for the case 
shown in Fig. 3, cc,nsists of waves travelling in different directions, corresponding to k2(to, X) and ka(to, 
X), which are converted into one another at turning points of rotation (at turning points the tangents 
to the k(X) graph are vertical). When R > R.  the amplifier described above is inserted into this chain 
of waves, leading to an increase in the perturbations with time. This behaviour of the perturbations 
occurred in the specific problem described in [10]. 

If when R < R. there is no chain of waves with real k (i.e. there are no eigenfunctions corresponding 
to real to), then for small R - R. > 0 no instability occurs since there is no effective feedback. 

Fig. 3. 
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Note that, generally speaking, there can also be turning points lying in the complexX plane. However, 
the reflection coefficients of these turning points are exceptionally small [7]. For small R - R. and 
correspondingly small X;, amplification of the waves in the section [-Xt', Xt'] will also be small and 
insufficient to give rise to a growing perturbation. It can occur for large values of R - R. when 
amplification of the waves turns out to be large and a growing chain of waves is formed, despite the 
smallness of the reflection coefficients of the complex turning points. We will not consider this case 
here. 

Hence, we have shown that when the dispersion relation is such that real or complex conjugate values 
of co correspond to real k and X, the occurrence of a region of local instability on the X axis leads to 
the occurrence of growing perturbations of non-uniform flow in two cases: (a) when the local instability 
that occurs is absolute, and (b) when the local instability that occurs for R > R. is convective, but when 
R < R. there is a chain of interconverting waves corresponding to real to. In the remaining cases, for 
sufficiently small R - R., the flow remains stable in the linear approximation. 

This research was carded out with financial support from the Russian Foundation for Basic Research 
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